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overview

» Milin, Filipovic-Durdevic & Moscoso del Prado (2009)

» Experiment 1: replication with primed self-paced reading

» Modeling with naive discriminative learning

» Experiment 2: relative entropy in syntax (lex. dec.)

» Experiment 3: relative entropy in syntax (eye-tracking)

» Relative entropy, random intercepts, and stem support



Milin et al. 2009

» {p}: the probability distribution of exponents
of a given lemma

» {qg}: the probability distribution of exponents

across all lemmata in an inflectional class

> relative entropy RE = ). p;log,(pi/qi)

» greater relative entropy, longer lexical decision latencies



Replication study using primed self-paced reading
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but interactions with masculine gender and nominative case



Interactions with weighted relative entropy
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Modeling (weighted) relative entropy effects

sources of inspiration
» recent work by Michael Ramscar on the Rescorla-Wagner
equations in language acquisition

» old work by Fermin Moscoso del Prado Martin
(PhD thesis, chapter 10)

» discussions with Jim Blevins



Models of morphological processing:
the ‘standard’ model (Rastle, Davis)
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orthographic cues

> letters and letter pairs as cues for meanings

> legal scrabble words beginning with ga
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orthographic cues

> letters and letter pairs as cues for meanings

> legal scrabble words beginning with ga

» gaid (Muslim tribal chief)
» ganat (gently sloping underground tunnel for irrigation)
» qgat (leaf of the shrub Catha edulis)

» our model is based on a generalization of this idea



naive discriminative learning

» Links between orthography (cues) and semantics (outcomes)

are established through discriminative learning

» Rescorla-Wagner equations for discriminative learning
(Rescorla & Wagner, 1972)

» Equilibrium equations for the Rescorla-Wagner equations
(Danks, 2003)

» The activation for a given meaning outcome is the sum of all
associative links between the (active) input letters and letter

pairs and that meaning



Rescorla-Wagner equations

Vif+1 _ Vit _|_Avlt

with
if ABSENT(C;, t)
if PRESENT(C}, t) & PRESENT(O, t)

0
AV = ajfy | A — ZPRESENT(CJ-, t) VJ)
ajfr (0 — ZPRESENT(CJ, t) \/J) if PRESENT(C}, t) & ABSENT(O, t)

» if a cue is reliable, it's connection strength will increase
» if a cue is unreliable, it's connection strength will decrease

» if many cues are relevant simultaneously, the contribution of a

single cue from the set will be small



Example lexicon

Word  Frequency Lexical Meaning Number

hand 10 HAND

hands 20 HAND PLURAL
land 8 LAND

lands 3 LAND PLURAL
and 35 AND

sad 18 SAD

as 35 AS

lad 102 LAD

lads 54 LAD PLURAL

lass 134 LASS




The
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Rescorla-Wagner equations applied
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a shortcut straight to the adult stable state

» equilibrium equations (Danks) when the system is in a
stable state, the connection weights to a given meaning can
be estimated by solving a set of linear equations

Pr(Go|Co) Pr(Gi|G) ... Pr(GylG) Vo Pr(0|Gy)
Pr(G|C1)  Pr(Gi|C) ... Pr(GylG) ) ( Vi ) _ ( Pr(0|Cy) )

Pr(ColCn)  Pr(CilCh) s Pr(Cn|Cn) Vi Pr(0|Cn)

V;: association strength of i-th cue C; to outcome O

» the association strengths V; optimize the conditional
outcomes given the conditional co-occurrence
probabilities characterizing the input space



from weights to meaning activations

» the activation a; of meaning / is the sum

of its incoming connection strengths
=3V
J

> the greater the meaning activation,
the shorter the response latencies
» simplest case:
RTsim; ox —a;
» a log transformation may be required to remove the right skew
from the distribution of simulated RTs:
RTsim;  log(1/a;)



the naive discriminative reader

» basic engine is parameter-free, and driven completely and only

by the language input

> the model is computationally undemanding: building the
weight matrix from a lexicon of 11 million phrases takes 10

minutes on my desktop

» implementation in R



from weights to meaning activations

» for Serbian case-inflected nouns, sum over lexical meanings

and grammatical meanings

» for priming, we use Ratcliff-McKoon's compound cue theory:

S= Z ap-a-") (0<w<05) (1)

» this introduces a free parameter for the prime duration

» we also use one free parameter to model the time required to

plan and execute a second fixation for longer words



Observed and simulated latencies (r = 0.24)
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Activation of case meanings

singular
plural
nominative
locative
instrumental
genitive
dative
accusative
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Summary Experiment 1

» relative entropy effects persist in sentential reading
> they are modified, but not destroyed by priming

> the interaction with masculine gender follows from the

distributional properties of the lexical input

» the interaction with nominative case remains unaccounted for

(functions and meanings?)

» frequency effects for complex words and paradigmatic effects
can arise without representations for complex words or

representational structures for paradigms



Experiment 2:

Relative entropy in syntax

phrase phrasal phrasal preposition prepositional

frequency probability frequency
on a plant 28608 0.279 on 177908042
in a plant 52579 0.513 in 253850053
under a plant 7346 0.072 under 10746880
above a plant 0 0.000 above 2517797
through a plant 0 0.000 through 3632886
behind a plant 760 0.007  behind 3979162
into a plant 13289 0.130 into 25279478

40 spatial prepositions

prepositional relative entropy



training data

» the model is trained on 11,172,554 two and three-word
phrases from the British National Corpus, comprising
26,441,155 word tokens

> phrases have as last word one of 24710 monomorphemic
words, or any bimorphemic compounds, derived and inflected

words containing one of the 24710 monomorphemic words



constructions sampled

PREPOSITION + ARTICLE + NOUN
PREPOSITION 4 POSSESSIVE PRON. + NOUN
PREPOSITION 4+ X + NOUN
PREPOSITION + NOUN

X’s + NouN

ARTICLE + NOUN

ARTICLE + X + NOUN
PoOsSsESSIVE PRONOUN + NOUN
ARTICLE 4+ X’s + NOUN
PRONOUN + AUXILIARY + VERB
PRONOUN + VERB

AUXILIARY + VERB

ARTICLE + ADJECTIVE

about a ballet
about her actions
about actual costs
about achievements
protege’s abilities

a box

the abdominal appendages
their abbots

the accountant’s bill
they are arrested

he achieves

is abandoning

the acute




processing of monomorphemic words

> stimuli: 1289 monomorphemic nouns
» lexical decision latencies from the English Lexicon Project

» simulated lexical decision latencies

» predictors
» Family Size
» Inflectional Entropy
» Written Frequency
» Number of Morphologically Complex Synonyms
» Neighborhood Density
» Mean Bigram Frequency
» Noun-Verb Ratio
> Length
» Prepositional Relative Entropy



results

correlation for the observed and simulated response latencies:
r = 0.55, t(1287) = 23.83, p <0.001
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Summary Experiment 2

» lexical paradigmatic effects (family size, inflectional entropy)
modeled successfully without representations for inflections
and derivations

» the phrasal paradigmatic effect is also modelled correctly,
without representations for phrases

» the paradigmatic distributional properties of a word can affect

single-noun reading



Other results obtained

» phrasal frequency effects
» phonaestheme effects
» corn-corner effects (pseudoderived words)

» family size effects, whole-word frequency effects, and base
frequency effects for complex words

» the interaction between first-constituent frequency and
whole-word frequeny in compound words (Kuperman et al.,

2009)

> interaction of regularity by tense in English



intermezzo: strong connectivity

» mediated priming (Balota & Lorch, 1986)

» cat — cab — taxi
> lion — tiger — stripes

» priming chains for compounds?

> tea trolley — trolley bus
> tea trolley — trolley bus — bus stop



spreading activation: weak connectivity
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is strong connectivity advantageous?

> is strong connectivity advantageous?

> possibly yes — more integrated learning

» possibly no — might cause confusion secondary family size

» this kind of connectivity should be beyond what the naive
discriminative reader can handle — but it isn’t



lexical connectivity
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Experiment 3: More on relative entropy in syntax

» reading aloud combined with eye tracking

» first experiment: reading aloud single words
(e.g., table)

» second experiment: reading aloud prepositional phrases
(e.g., on the + table)



Experiment 3: single words, total fixation time
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Experiment 3: phrases, total fixation time
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Naive discriminative and mixed-effects classifiers

Word Frequency Case Lemma Relative Ranef Stem Support Stem Support Exponent
Form Entropy Nominative Genitive Support
AQEa 10 nom A 0.134 -1.121 -0.014 0.260 0.353
AQEi 20 gen A 0.134 -1.121 -0.014 0.260 0.740
AQEu 30 acc A 0.134 -1.121 -0.014 0.260 0.595
AQEa 40 acc A 0.134 -1.121 -0.014 0.260 0.127
ABCa 15 nom B 0.053 -0.676 0.037 0.260 0.353
ABCi 22 gen B 0.053 -0.676 0.037 0.260 0.740
ABCu 28 acc B 0.053 -0.676 0.037 0.260 0.595
ABCa 35 acc B 0.053 -0.676 0.037 0.260 0.127
APQa 20 nom C 0.010 -0.288 0.087 0.260 0.353
APQi 24 gen C 0.010 -0.288 0.087 0.260 0.740
APQu 26 acc C 0.010 -0.288 0.087 0.260 0.595
APQa 30 acc C 0.010 -0.288 0.087 0.260 0.127
ZPEa 30 nom D 0.007 0.243 0.162 0.260 0.353
ZPEi 26 gen D 0.007 0.243 0.162 0.260 0.740
ZPEu 24 acc D 0.007 0.243 0.162 0.260 0.595
ZPEa 25 acc D 0.007 0.243 0.162 0.260 0.127
EPBa 35 nom E 0.039 0.583 0.210 0.260 0.353
EPBI 28 gen E 0.039 0.583 0.210 0.260 0.740
EPBu 22 acc E 0.039 0.583 0.210 0.260 0.595
EPBa 20 acc E 0.039 0.583 0.210 0.260 0.127
DPBa 40 nom F 0.139 1.269 0.289 0.260 0.353
DPBi 30 gen F 0.139 1.269 0.289 0.260 0.740
DPBu 20 acc F 0.139 1.269 0.289 0.260 0.595
DPBa 10 acc F 0.139 1.269 0.289 0.260 0.127




stem support, random intercepts, and unsigned

relative entropy

F(2,3) = 230.9, p = 0.0005 F(2.3) = 348, p = 0.0003 F(1,4) = 2590, p < 0.0001
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the main trend depends on the balance
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trend depends on position prototype
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trend depends on position prototype

> in a complex system, the same measure can have slopes with
opposite signs depending on the distributional properties of
the language input

» this may help explain the changes in sign of RE in the
eye-tracking+naming study

» our distributional measures provide partial and

potentially distorting views on the complex structure

arising from simple principles of learning



Discussion

» Our model shows morphological effects in the absence of

morphological representations, including paradigmatic effects

» This is consistent with a-morphous views on morphology
(e.g.: Anderson, 1992; Blevins, 2003)

» The model is a classifier (for the dative alternation, it
outperforms mixed models)
» relative entropies are functionally equivalent to unsigned
random intercepts in a mixed-effects model
» relative entropies capture the total association strengths from

stems to grammatical meanings



Discussion

v

Our model is similar in spirit to the reading part of the

triangle model (Seidenberg & Gonnermann, 2000)

Both models map orthography onto semantics without

morphological representations

Our computational engine, however, is much simpler than
that of the triangle model: we do not assume hidden layers or

use back-propagation to estimate connection weights.

Furthermore, our model is more radically a-morphous in that
there is no hidden layer that can covertly represent
morphology.



Discussion

» Our model is also similar in spirit to the Bayesian Reader
(Norris, 2006)

» Both models map forms onto ‘central’ representations without

intercession by morphemes

» Our computational engine, however, is much simpler than that
of the Bayesian reader: the complexity of the Bayesian reader
is quadratic in the number of orthographic ‘units’, whereas
our model is linear in the number of elementary meanings



Summary

» Discriminative learning provides a good fit to a wide range

of experimental data

» The model is trained on realistic input, it is as sparse as
possible in its number of representations, and it is

computationally efficient

» The model does not make an a priori distinction between
phrasal learning and morphological learning, and therefore can
straightforwardly handle gradient phenomena at the interface
of morphology and syntax (cf. construction morphology, Booij
2010)



