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overview

I Milin, Filipovic-Durdevic & Moscoso del Prado (2009)

I Experiment 1: replication with primed self-paced reading

I Modeling with naive discriminative learning

I Experiment 2: relative entropy in syntax (lex. dec.)

I Experiment 3: relative entropy in syntax (eye-tracking)

I Relative entropy, random intercepts, and stem support



Milin et al. 2009

I {p}: the probability distribution of exponents

of a given lemma

I {q}: the probability distribution of exponents

across all lemmata in an inflectional class

I relative entropy RE =
∑

i pi log2(pi/qi )

I greater relative entropy, longer lexical decision latencies



Replication study using primed self-paced reading

I weighted relative entropy:
∑

i
piwi∑
i piwi

log2
pi
qi

I weights wi = f (targeti )
f (primei )

I a greater WRE predicts longer latencies

I but interactions with masculine gender and nominative case



Interactions with weighted relative entropy
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Modeling (weighted) relative entropy effects

sources of inspiration

I recent work by Michael Ramscar on the Rescorla-Wagner

equations in language acquisition

I old work by Fermin Moscoso del Prado Martin

(PhD thesis, chapter 10)

I discussions with Jim Blevins



Models of morphological processing:

the ‘standard’ model (Rastle, Davis)

form

morphology

semantics

w i n e r #w wi in nn ne er r#

WINNER

win er



Our approach: amorphous morphology

form

morphology

semantics

w i n e r #w wi in nn ne er r#

WIN AGENT



orthographic cues

I letters and letter pairs as cues for meanings

I legal scrabble words beginning with qa

I qaid (Muslim tribal chief)

I qanat (gently sloping underground tunnel for irrigation)

I qat (leaf of the shrub Catha edulis)

I our model is based on a generalization of this idea



orthographic cues

I letters and letter pairs as cues for meanings

I legal scrabble words beginning with qa

I qaid (Muslim tribal chief)

I qanat (gently sloping underground tunnel for irrigation)

I qat (leaf of the shrub Catha edulis)

I our model is based on a generalization of this idea



orthographic cues

I letters and letter pairs as cues for meanings

I legal scrabble words beginning with qa

I qaid (Muslim tribal chief)

I qanat (gently sloping underground tunnel for irrigation)

I qat (leaf of the shrub Catha edulis)

I our model is based on a generalization of this idea



orthographic cues

I letters and letter pairs as cues for meanings

I legal scrabble words beginning with qa

I qaid (Muslim tribal chief)

I qanat (gently sloping underground tunnel for irrigation)

I qat (leaf of the shrub Catha edulis)

I our model is based on a generalization of this idea



orthographic cues

I letters and letter pairs as cues for meanings

I legal scrabble words beginning with qa

I qaid (Muslim tribal chief)

I qanat (gently sloping underground tunnel for irrigation)

I qat (leaf of the shrub Catha edulis)

I our model is based on a generalization of this idea



naive discriminative learning

I Links between orthography (cues) and semantics (outcomes)

are established through discriminative learning

I Rescorla-Wagner equations for discriminative learning

(Rescorla & Wagner, 1972)

I Equilibrium equations for the Rescorla-Wagner equations

(Danks, 2003)

I The activation for a given meaning outcome is the sum of all

associative links between the (active) input letters and letter

pairs and that meaning



Rescorla-Wagner equations

V t+1
i = V t

i + ∆V t
i

with

∆V t
i =


0 if absent(Ci , t)

αiβ1

(
λ−

∑
present(Cj , t) Vj

)
if present(Cj , t) & present(O, t)

αiβ2

(
0−

∑
present(Cj , t) Vj

)
if present(Cj , t) & absent(O, t)

I if a cue is reliable, it’s connection strength will increase

I if a cue is unreliable, it’s connection strength will decrease

I if many cues are relevant simultaneously, the contribution of a

single cue from the set will be small



Example lexicon

Word Frequency Lexical Meaning Number

hand 10 hand
hands 20 hand plural
land 8 land
lands 3 land plural
and 35 and
sad 18 sad
as 35 as
lad 102 lad
lads 54 lad plural
lass 134 lass



The Rescorla-Wagner equations applied
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a shortcut straight to the adult stable state

I equilibrium equations (Danks) when the system is in a

stable state, the connection weights to a given meaning can

be estimated by solving a set of linear equations


Pr(C0|C0) Pr(C1|C0) . . . Pr(Cn|C0)

Pr(C0|C1) Pr(C1|C1) . . . Pr(Cn|C1)

. . . . . . . . . . . .

Pr(C0|Cn) Pr(C1|Cn) . . . Pr(Cn|Cn)




V0

V1

. . .

Vn

 =


Pr(O|C0)

Pr(O|C1)

. . .

Pr(O|Cn)

 .

Vi : association strength of i-th cue Ci to outcome O

I the association strengths Vj optimize the conditional

outcomes given the conditional co-occurrence

probabilities characterizing the input space



from weights to meaning activations

I the activation ai of meaning i is the sum

of its incoming connection strengths

ai =
∑
j

Vji

I the greater the meaning activation,

the shorter the response latencies

I simplest case:

RTsimi ∝ −ai
I a log transformation may be required to remove the right skew

from the distribution of simulated RTs:

RTsimi ∝ log(1/ai )



the naive discriminative reader

I basic engine is parameter-free, and driven completely and only

by the language input

I the model is computationally undemanding: building the

weight matrix from a lexicon of 11 million phrases takes 10

minutes on my desktop

I implementation in R



from weights to meaning activations

I for Serbian case-inflected nouns, sum over lexical meanings

and grammatical meanings

I for priming, we use Ratcliff-McKoon’s compound cue theory:

S =
10∑
i=1

(awPi · a1−w
Ti ) (0 ≤ w ≤ 0.5) (1)

I this introduces a free parameter for the prime duration

I we also use one free parameter to model the time required to

plan and execute a second fixation for longer words



Observed and simulated latencies (r = 0.24)
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Activation of case meanings
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Summary Experiment 1

I relative entropy effects persist in sentential reading

I they are modified, but not destroyed by priming

I the interaction with masculine gender follows from the

distributional properties of the lexical input

I the interaction with nominative case remains unaccounted for

(functions and meanings?)

I frequency effects for complex words and paradigmatic effects

can arise without representations for complex words or

representational structures for paradigms



Experiment 2: Relative entropy in syntax

phrase phrasal phrasal preposition prepositional prepositional
frequency probability frequency probability

on a plant 28608 0.279 on 177908042 0.372
in a plant 52579 0.513 in 253850053 0.531
under a plant 7346 0.072 under 10746880 0.022
above a plant 0 0.000 above 2517797 0.005
through a plant 0 0.000 through 3632886 0.008
behind a plant 760 0.007 behind 3979162 0.008
into a plant 13289 0.130 into 25279478 0.053

40 spatial prepositions

prepositional relative entropy



training data

I the model is trained on 11,172,554 two and three-word

phrases from the British National Corpus, comprising

26,441,155 word tokens

I phrases have as last word one of 24710 monomorphemic

words, or any bimorphemic compounds, derived and inflected

words containing one of the 24710 monomorphemic words



constructions sampled

Preposition + Article + Noun about a ballet

Preposition + Possessive Pron. + Noun about her actions

Preposition + X + Noun about actual costs

Preposition + Noun about achievements

X’s + Noun protege’s abilities

Article + Noun a box

Article + X + Noun the abdominal appendages

Possessive Pronoun + Noun their abbots

Article + X’s + Noun the accountant’s bill

Pronoun + Auxiliary + Verb they are arrested

Pronoun + Verb he achieves

Auxiliary + Verb is abandoning

Article + Adjective the acute



processing of monomorphemic words

I stimuli: 1289 monomorphemic nouns

I lexical decision latencies from the English Lexicon Project

I simulated lexical decision latencies

I predictors

I Family Size

I Inflectional Entropy

I Written Frequency

I Number of Morphologically Complex Synonyms

I Neighborhood Density

I Mean Bigram Frequency

I Noun-Verb Ratio

I Length

I Prepositional Relative Entropy



results

correlation for the observed and simulated response latencies:
r = 0.55, t(1287) = 23.83, p <0.001
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Summary Experiment 2

I lexical paradigmatic effects (family size, inflectional entropy)

modeled successfully without representations for inflections

and derivations

I the phrasal paradigmatic effect is also modelled correctly,

without representations for phrases

I the paradigmatic distributional properties of a word can affect

single-noun reading



Other results obtained

I phrasal frequency effects

I phonaestheme effects

I corn-corner effects (pseudoderived words)

I family size effects, whole-word frequency effects, and base

frequency effects for complex words

I the interaction between first-constituent frequency and

whole-word frequeny in compound words (Kuperman et al.,

2009)

I interaction of regularity by tense in English



intermezzo: strong connectivity

I mediated priming (Balota & Lorch, 1986)

I cat → cab → taxi

I lion → tiger → stripes

I priming chains for compounds?

I tea trolley → trolley bus

I tea trolley → trolley bus → bus stop



spreading activation: weak connectivity
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spreading activation: strong connectivity
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is strong connectivity advantageous?

I is strong connectivity advantageous?

I possibly yes — more integrated learning

I possibly no — might cause confusion secondary family size

I this kind of connectivity should be beyond what the naive

discriminative reader can handle — but it isn’t



lexical connectivity
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Experiment 3: More on relative entropy in syntax

I reading aloud combined with eye tracking

I first experiment: reading aloud single words

(e.g., table)

I second experiment: reading aloud prepositional phrases

(e.g., on the + table)



Experiment 3: single words, total fixation time
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Experiment 3: phrases, total fixation time
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Naive discriminative and mixed-effects classifiers

Word Frequency Case Lemma Relative Ranef Stem Support Stem Support Exponent

Form Entropy Nominative Genitive Support

AQEa 10 nom A 0.134 -1.121 -0.014 0.260 0.353

AQEi 20 gen A 0.134 -1.121 -0.014 0.260 0.740

AQEu 30 acc A 0.134 -1.121 -0.014 0.260 0.595

AQEa 40 acc A 0.134 -1.121 -0.014 0.260 0.127

ABCa 15 nom B 0.053 -0.676 0.037 0.260 0.353

ABCi 22 gen B 0.053 -0.676 0.037 0.260 0.740

ABCu 28 acc B 0.053 -0.676 0.037 0.260 0.595

ABCa 35 acc B 0.053 -0.676 0.037 0.260 0.127

APQa 20 nom C 0.010 -0.288 0.087 0.260 0.353

APQi 24 gen C 0.010 -0.288 0.087 0.260 0.740

APQu 26 acc C 0.010 -0.288 0.087 0.260 0.595

APQa 30 acc C 0.010 -0.288 0.087 0.260 0.127

ZPEa 30 nom D 0.007 0.243 0.162 0.260 0.353

ZPEi 26 gen D 0.007 0.243 0.162 0.260 0.740

ZPEu 24 acc D 0.007 0.243 0.162 0.260 0.595

ZPEa 25 acc D 0.007 0.243 0.162 0.260 0.127

EPBa 35 nom E 0.039 0.583 0.210 0.260 0.353

EPBi 28 gen E 0.039 0.583 0.210 0.260 0.740

EPBu 22 acc E 0.039 0.583 0.210 0.260 0.595

EPBa 20 acc E 0.039 0.583 0.210 0.260 0.127

DPBa 40 nom F 0.139 1.269 0.289 0.260 0.353

DPBi 30 gen F 0.139 1.269 0.289 0.260 0.740

DPBu 20 acc F 0.139 1.269 0.289 0.260 0.595

DPBa 10 acc F 0.139 1.269 0.289 0.260 0.127



stem support, random intercepts, and unsigned

relative entropy
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the main trend depends on the balance
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trend depends on position prototype
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trend depends on position prototype

I in a complex system, the same measure can have slopes with

opposite signs depending on the distributional properties of

the language input

I this may help explain the changes in sign of RE in the

eye-tracking+naming study

I our distributional measures provide partial and

potentially distorting views on the complex structure

arising from simple principles of learning



Discussion

I Our model shows morphological effects in the absence of

morphological representations, including paradigmatic effects

I This is consistent with a-morphous views on morphology

(e.g.: Anderson, 1992; Blevins, 2003)

I The model is a classifier (for the dative alternation, it

outperforms mixed models)

I relative entropies are functionally equivalent to unsigned

random intercepts in a mixed-effects model

I relative entropies capture the total association strengths from

stems to grammatical meanings



Discussion

I Our model is similar in spirit to the reading part of the

triangle model (Seidenberg & Gonnermann, 2000)

I Both models map orthography onto semantics without

morphological representations

I Our computational engine, however, is much simpler than

that of the triangle model: we do not assume hidden layers or

use back-propagation to estimate connection weights.

I Furthermore, our model is more radically a-morphous in that

there is no hidden layer that can covertly represent

morphology.



Discussion

I Our model is also similar in spirit to the Bayesian Reader

(Norris, 2006)

I Both models map forms onto ‘central’ representations without

intercession by morphemes

I Our computational engine, however, is much simpler than that

of the Bayesian reader: the complexity of the Bayesian reader

is quadratic in the number of orthographic ‘units’, whereas

our model is linear in the number of elementary meanings



Summary

I Discriminative learning provides a good fit to a wide range

of experimental data

I The model is trained on realistic input, it is as sparse as

possible in its number of representations, and it is

computationally efficient

I The model does not make an a priori distinction between

phrasal learning and morphological learning, and therefore can

straightforwardly handle gradient phenomena at the interface

of morphology and syntax (cf. construction morphology, Booij

2010)


