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Abstract. Deacon [1] considers that the reverse Baldwin effect can be
one of the major forces in language evolution. The reverse Baldwin effect
is essentially a redistributional process of genes as a result of environ-
mental changes which mask and unmask selection pressures. Although
Deacon indicates that in the case of language evolution, niche construc-
tion is deeply involved in masking and unmasking processes, neither spe-
cific explanations for the mechanism nor examples have been given. In
this study we use evolutionary computation simulations to explore how
niche constructing properties of language evolution can induce at least
the masking effect, and hence lead to genetic degradation. The simulation
demonstrates that the masking effect is indeed a part of the evolutionary
process found in the normal Baldwin effect.

1 Introduction

As a causal theory of learning and evolution, the Baldwin effect has gathered
wide attention in evolutionary linguistics where first language acquisition is rec-
ognized as one of the key issues to understand this uniquely human capacity.
However, for those accustomed to the Baldwinian view of the relationship be-
tween learning and evolution, what Deacon [1] describes may sound somewhat
counterintuitive. While the Baldwin effect describes how previously learnt knowl-
edge becomes a part of innate knowledge, according to Deacon, under some cir-
cumstances, innate knowledge would be replaced by more plastic, learnt knowl-
edge. As the process seemingly follows the opposite flow of what the Baldwin
effect describes, he called this process the “reverse Baldwin effect”. This paper
will present how the niche constructing aspect of language evolution serves as
one of the key mechanisms necessary for the purported effect without assum-
ing, as Deacon has, that externally motivated changes (like climate changes) in
environmental conditions would take place.

2 Genetic Redistribution

While Waddington’s [2] genetic assimilation is often conceived of as the mech-
anism of the Baldwin effect, Deacon believes that the reverse Baldwin effect
is essentially a process of “genetic redistribution” where initially high innate
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knowledge is functionally replaced by a suite of traits each of which has its own
original function.

It is thought that genetic redistribution is triggered when the current se-
lective pressure is somehow shielded. This is called the “masking effect” and it
effectively works to reduce the adaptive importance of the trait carried. Con-
sequently, the masking effect causes the gene expressing the trait to randomly
drift. Eventually the gene loses its functional significance and becomes a “pseu-
dogene”; incapable of expressing the given trait. When the mask is lifted (i.e. the
original selective pressure resurfaces), the organism has to take an alternative
option to compensate for the lack of the trait. Deacon posits that this “unmask-
ing effect” causes originally irrelevant traits that evolved for different functions
to form a suite in order to replicate the function of the original trait (and the
gene for it).

Because the focal function is now subserved by the complexes of different
traits attributed to a group of genes, the original selective pressure is now re-
distributed onto those genes. As the function is no longer controlled by a single
gene, but a suite of different genes, Deacon considers it effectively increases the
freedom of ontogenetic accommodation; the reverse Baldwin effect.

2.1 Case Studies

One of the empirical examples Deacon and others [1,3] often draw on is the case
of vitamin C synthesis. Somehow, the ability of synthesizing ascorbic acid (vi-
tamin C) was lost in the primate lineage including Homo. It is known that the
gene responsible for the enzyme working on the last stage of the synthesis was
replaced by its degraded pseudogene. Around the period when the gene irrepara-
bly deteriorated, it is assumed that the climate was warm allowing primates to
obtain vitamin C rich fruits easily. This masked the adaptive importance of syn-
thesizing the vitamin endogenously, and consequently the genes attributed to the
function started to randomly drift. This effectively made the primates “dietarily
entrenched” in a frugivorous life style. A change in climate, however, made the
fruits scarcer, and unmasked the selective pressure once again. Because the gene
responsible for the synthesis had become a pseudoegene because of the random
drift, the primates had to rely on other traits to compensate. The alternative
was to increase foraging ability to obtain fruits effectively. For that purpose, var-
ious primarily independent traits such as tooth structure, color vision, and taste
preference were employed and increased their evolutionary importance: redistri-
bution of selective pressure of the function originally served by the innate trait
onto the suite of more genetically indirect traits. Wiles et al. [3] have conducted
computer simulations based on the above argument, and confirmed that inter-
actions between learning and evolutionary search could induce not only genetic
assimilation, but also genetic redistribution if masking and unmasking effects
take place.

Deacon (p.c.) has similarly attempted to explain the striking complexifica-
tion of bird song during the domestication process of the whitebacked munia
(Lonchura striata var. domestica) from its feral ancestor, the Bengalese finch
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(Lonchura striata) [4]. Ritchie and Kirby [5] have demonstrated that this de-
scription of the song’s complexification through the reverse Baldwin effect is
computationally attestable.

2.2 Masking Effect in Language Evolution

Given the potential explanatory power of the reverse Baldwin effect, both Dea-
con [1] and Wiles et al. [3] envisage that it could also play a significant role in
language evolution. However, it is apparent from the above arguments that, for
the reverse Baldwin effect to take place, there needs to be some causal agent
to induce the masking effect. In the case of vitamin C, it was the warm cli-
mate (and abundant fruits), and in the case of the munia, it was domestication.
Deacon considers the potential masking agent in language evolution is its niche
constructing process [6,7]. However, it is unclear quite how the process comes
into play as regards the masking effect. In the next section, we will examine
how complex interactions between language learning and evolution create niche
constructing processes, and how they transfer the selective pressure on innate
linguistic knowledge to learning, and hence lead to genetic drift.

3 A Computational Model

In order to establish if the niche constructing aspect of language could mask
selective pressure, a computational simulation of language evolution has been
developed. The simulation, which plausibly models both biological and cultural
evolution, and the developmental aspect of language at a reasonable level, is
based on my research [7] The model works with an evolving population of agents.

3.1 Stages

The main stages in the simulation are listed here, and details of each stage are
given in following sections:

Birth The agent’s grammar is empty regardless of innate linguistic knowl-
edge coded in a chromosome G-Chrom, described in the next section. The
agent’s cognitive ability is determined based on her designated chromosome
L-Chrom, also described in the next section.

Learning The agent is exposed to nInput linguistic inputs from her linguistic
environment (i.e. E-language). nInput is considered to set the critical period.
With the learning algorithm described in the next section, the agent builds
her own grammar by using a particular cognitive ability Cog.

Invention The agent invents some parts of her grammar by using Cog.
Communication The agent communicates with her two immediate neighbor

peers for nCom times. Successful communication will increase the agent’s
fitness score.
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Reproduction Parents are selected probabilistically according to their fitness
score and their chromosomes are crossed over using one-point cross-over to
give two children. The two chromosomes (i.e. G-Chrom and L-Chrom) are
independent, and cross-over takes place within each of the chromosomes.
Individual genes are mutated with probability pM.

Death The entire grammar of each agent in the population is sampled and the
resulting linguistic information creates an E-language from which the next
generation is to learn.

3.2 Model Structure

1. The Agent An agent has two types of chromosomes, namely G-Chrom and
L-Chrom. Genetic information of innate linguistic knowledge is coded in G-
Chrom. The innate linguistic knowledge is encoded as a string of 0s, 1s, and
*s in G-Chrom. * is thought of a junk allele, and no use for anything. In
the results reported here, the entire knowledge is represented in a 24 ternary
string (i.e. the number of genes in G-Chrom is 24). The initial gene pool has
random numbers of 0s, 1s, and *s (thus, on average, one agent has 8 of each
allele).
The agent also has a different type of genetic information on L-Chrom coding
the size of the cognitive capacity Cog. Cog is a cognitive capacity which
enables the agent to update her grammar when discrepancies exist between
her innate linguistics knowledge and linguistic inputs, and invent her own
grammatical information. The size of Cog is given by a quantifiable scalar
value nCog. The value is determined based on the number of 1s in L-Chrom.
L-Chrom consists of a 48 binary string. The incremental value iV is set to 1
in the reported simulation. Therefore, the maximum value of nCog is 48.
A grammar is coded as a ternary string, and the length of the string is 24
–equal to the size of G-Chrom. Three possible allelic values are 0, 1 and
NULL. Wherever there is a NULL allele on the grammar, this part of the
grammar is considered NOT to code any linguistic knowledge. Therefore,
the more the NULL alleles there are in a grammar, the less the grammar
codes linguistic knowledge. As described in the next section, although the
agent learns a particular grammar by using her innate linguistic knowledge
and input data, the grammar does not necessarily faithfully reflect the in-
nate linguistic knowledge coded in G-Chrom; some parts of the grammar
may converge to different values from the corresponding parts of the innate
knowledge.

2. Learning Every agent in every generation is born with a completely empty
grammar; all 24 alleles are NULL. Learning is the process to update such
NULL alleles to substantial alleles (i.e. 0s and 1s). A learning agent sequen-
tially receives linguistic inputs from nAdult adult neighbors (this is set to 5
in the simulation). Adults are the agents from the previous generation. A lin-
guistic input is thought of as the utterance of an adult, which is represented
by one allele of her mature grammar. Utterances derived from NULL alle-
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les are considered as NULL utterances, and no learning (thus no grammar
update) takes place. Following is the algorithm to develop the grammar:
Learning Algorithm Whenever the learner receives a linguistic input:
1. If the input value and the allelic value of the corresponding locus of

the learner’s grammar are different(i.e. not “parsable”), carry out the
following the procedures:
(a) If the corresponding allele of G-Chrom (her innate linguistic knowl-

edge) “matches” (i.e. the two values are the same) with the input,
update the given allele of the current grammar, and subtract 1 point
from nCog.

(b) If the corresponding allele of the innate linguistic knowledge is differ-
ent from the input, update the given allele of the current grammar,
and subtract 2 points from nCog.

2. Otherwise keep the current grammar.
The learning procedure is ceased when either nCog reaches 0 or the number
of inputs meets nInput. nInput is set to 120. NULL utterances are counted for
this process. Any locus of the grammar not receiving any input (or receiving
only NULL utterances) remains NULL. Who utters and which part of her
grammar is provided an input datum is totally random. This means that if
the adults have totally different grammars, the learner may update a given
allele of her grammar frequently.

3. Invention Agents are capable of inventing their own linguistic knowledge,
and of adding it onto their grammars. If an agent still holds NULL alleles in
her grammar after the learning has taken place, and if her nCog has not yet
become 0, with a probability of pI, pick one NULL allele randomly, and flip
it to either 0 or 1 randomly, and subtract 1 point from nCog. This process
is carried on until either no more NULL allele is in the grammar, or nCog
reaches 0. In reported the simulation, pI is set to 0.02. Once the invention
process is over, her grammar is considered to have reached a mature state,
and no more grammar update takes place.

4. Communication Each agent is involved in nCom communicative acts with
her immediate peer neighbors. The fitness of an agent is scored on the basis
of how many utterances spoken with her mature grammar were parsable to
the hearer1. The same as for learning input, an utterance is represented by
one allele of the speaker’s mature grammar. nCom is set to 15 for utterances.
As each neighbor also speaks to each agent the same number of times, a total
of 30 communicative acts is involved to gauge her fitness. Each successful
communication increases her fitness by 1. Those who cannot establish any
communication still receive 1 fitness score to keep the possibility of being a
parent in Reproduction. Therefore, the maximum fitness value is 31.

5. Reproduction Roulette wheel selection is used for selecting parents accord-
ing to their fitness, and their chromosomes G-Chrom and L-Chrom are in-
dividually crossed over using single-point crossover to create two offspring.
pM is set to 0.001 per allele.

1 By the configuration of the model, this also means that how many utterances of the
other can be parsed with her grammar
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3.3 Layout of the Model

In this section, the overall layout of the model is described. The layout basically
follows Kirby and Hurford [8]. Fig. 1 shows how the elements of the simulation
are organized.
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Fig. 1. An overview of the simulation

model.
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Fig. 2. The spatial organization of the

population.

The figure shows how the niche constructing properties of the language are
modeled in the simulation. Notice that there are two different channels of inheri-
tance that interact with each other; namely cultural and biological inheritances.
Linguistic knowledge is inherited in the biological channel via genes (i.e. innate
linguistic knowledge) and is also inherited in the cultural channel via learning.
What is inherited through the cultural channel is niche constructed grammars;
accumulations of previous generations’ linguistic inventions become the learn-
ing environment from which learners reconstruct their ancestors’ grammars. The
other side of the coin is biological niche construction; grammars acquired with
that manner also affect the natural selection of individuals. The adaptive utility
of a given grammar is only determined when a specific linguistic demography of
the population is referred2. As such a demography is created by previous gen-
erations’ linguistic activities (including both learning and communications), it
is also a product of niche construction; in this case, what is constructed is a
biological niche which affects individuals fitness.

Fig. 2 shows the spatial organization of the populations. Individuals are or-
ganized in a one-dimensional loop. Circles on the two different tiers represent
adults and learners (i.e. two different generations). Incidents of communications
(represented by the horizontal double-arrows in the adult tier) only take place
within a single tier and is local since an individual attempts to communicate with
her two immediate neighbor peers (left and right, in this figure). While this is
an adult-to-adult process that results in natural selection, learning is thought of
a vertical, adult-to-child transmission which results in cultural inheritance. One
2 A particular grammar is only useful when others communicate with the same or very

similar grammars.
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adult provides linguistic inputs for nAdult neighbor learners (from the learner’s
point of view, she receives the inputs from nAdult immediate neighbor adults).

Note that reproduction is not affected by this spatial organization. Parents
are probabilistically selected in proportion to their fitness and their offspring is
randomly distributed in this space.

4 Results

All figures shown here are taken from one typical run of the simulation under the
conditions described, and as such they well characterize the general tendency of
the model. Fig.3 shows the average fitness of the population over time with a
red line, and the average number of NULL alleles in matured grammars with a
blue line. Rapid increase of the fitness (reaching 30 around the 150th generation)
shows the population quickly evolves to almost the optimal state (the highest
possible score is 31) as they develop their linguistic knowledge (i.e. reduction of
NULL alleles). They do not do so randomly, rather neighbor individuals develop
similar grammars in order to establish communications with peers.

Fig.4 shows the average number of * (“Junk”) alleles in G-Chrom in a red
line, the average matching number nMatch of matured grammars and G-Chrom,
and evolution Cog by presenting nCog in a green line. We compare learners’
stable grammar (i.e. after the learning, but before the invention stages) with
their G-Chrom (i.e. innate linguistic knowledge. nMatch indicates a degree of
contribution of innate linguistic knowledge to a given mature grammar. The
higher the matching number is, the more of one’s innate knowledge is reflected
on the matured grammar. From the graph, it is apparent that soon after Cog has
evolved, genes in G-Chrom start to match with grammars, and rapidly hit the
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highest point (on average 20 genes match with alleles in grammars at around the
200th generation) while nCog is still able to override only 14 alleles. The average
number of the junk allele also supports this view. As nMatch grows, the junk
allele rapidly expelled from the population. However, as Cog gradually evolves,
nMatch decreases and becomes stable around 15. Along the same line, the junk
allele also kicks in the population once again.

5 Analysis

The time course of the simulation demonstrates a complex interactions of learn-
ing, its evolution, and evolution of innate linguistic knowledge. Overall, we are
able to summarize the course in three main stages: Stage 1: Baldwinian Niche
Construction 0-200 (generations); Stage 2: Masking 200-4000; and Stage 3: Stable
4000-.

5.1 Baldwinian Niche Construction

The initial rapid increase of fitness in Stage 1 goes hand in hand with the in-
crease of genetic contribution in language acquisition. What is striking is that
this trend starts immediately after the average nCog reaches 1 (around the 30th
generation) and it reaches almost the highest possible value, while nCog still
remains around 12 which barely covers a half of the whole grammar to be up-
dated. This strongly implies that innate linguistic knowledge of learners highly
faithfully represents invented grammars of previous generations. The population
at the first few generations would not receive any input from the previous gen-
erations as with 0 Cog, neither learning nor invention takes place to leave input
for next generation. However, soon after Cog evolves in some individuals, they
can invent their own grammatical information randomly, they do not use Cog for
learning (because previous generations neither learn nor invent their grammars)
and can utilize it to invent their own grammar. Their grammar would be just a
fraction of the full-size grammars, but those agents can leave the grammars for
the next generation’s linguistic input. For the next generation, the potentially
most adaptive individuals would be those who have genetic alleles matching
with linguistic inputs, and spare Cog for inventing further linguistic knowledge:
with extremely limited Cog, individuals who have to learn (update) their gram-
mar would completely lose the chance to push the envelop of their grammar,
and fail to establish communication. Then some of the individuals in the next
generation have genes matching with further input utterances, and repeat the
same process. This is a cyclic process which Avital and Jablonka [9] have called
“assimilate stretch”: learning pushes the envelop ⇒ genes assimilate it ⇒ leave
the room for the learning to push the envelop further. Consequently, * alleles in
G-Chrom are quickly winnowed out, and 0s and 1s are reshuffled to match the
given linguistic environment. Importantly, this cycle of adaptive assimilations is
the consequence, and the cause of the niche construction process in the linguis-
tic environment: what is created here is linguistic knowledge which works as a
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niche for both cultural inheritance and biological inheritance: individuals learn
from linguistic knowledge created (invented) by the previous generations (niche
construction in the cultural channel), and adaptability of their learnt grammars
is evaluated only within local linguistic communities (through communications
with neighbor peers). The assimilated innate linguistic knowledge also canalizes
what type of grammars are learnable, and it reflects on agents’ learnt gram-
mars. Those grammars determines the shape of the selective environment (the
selection is frequency dependent as the utility of a given grammar is determined
by the frequency of other grammars in neighbors). This is what I [7] report as
Baldwinian Niche Construction.

5.2 The Masking Effect

Once niche constructed linguistic knowledge, which is a cooperative product of
highly limited Cog and G-Chrom, has been transferred into innate linguistic
knowledge, the masking effect is able to take place. As Cog evolves in Stage 2,
the importance of the contribution of innate linguistic knowledge begins to be
masked. This permits random drift to affect genes in G-Chrom: as learning can
cover the discrepancy between inputs and innate knowledge, the number of the
junk allele gradually increases. The result is a coordinated decrease of nMatch.
This trend continues until around the 3000th generation, where G-Chrom and
nMatch, and the number of the junk allele reach their (somewhat rough) plateaus
(Stage 3). During Stage 2, nMatch decreases by nearly 5, and remains around 15
in Stage 3. Therefore, once again Cog shoulders the important role of language
acquisition.

It is highly significant that, given the early increase of fitness, the selective
pressure for the increase of Cog seems to be well diminished at the end of Stage
1, while in fact it keeps evolving. This is potentially because a different type of
random drift takes place in L-Chrom: initially the chromosome does not include
any 1s. Because of mutations in the genes, however, gradually the numbers of the
alleles increase, and spreads by crossovers. In other words, the evolution of Cog
is a largely neutral one. This indicates that the masking effect is an epiphenomic
consequence of the neutral evolution.

6 Discussion and Conclusion

The simulation clearly demonstrates the self-induced model of the masking effect
by the niche constructing property of language. The result is comparable to those
provided in Wiles et al. [3], and Ritchie and Kirby [5]. However, both models
employ arbitrary changes in environmental conditions to induce the masking
effect. In this regard, our model successfully presents one possible mechanism of
the niche construction based masking effect as Deacon envisages it.

As it stands though, the model does not explain how and why the unmasking
effect would occur. The model only shows that a certain degree of the mask-
ing effect takes place; this does not cause a substantial degradation of genetic



324 H. Yamauchi

information which is necessary for the unmasking effect (although our model
fundamentally lacks the mechanism to induce the unmasking effect due to the
way that G-Chrom and L-Chrom interact). We observe that if Cog is arbitrarily
knocked down (i.e. reduce nCog) after it reaches the plateau, the genetic contri-
bution could manage to recover its strong effect on learning again. However, as
Wiles et al. [3] state, unmasking may not require explicit environmental changes
to necessary conditions for genetic redistribution to take place.

Also, the model does not demonstrate genetic redistribution. This is because
our model design lacks distributional properties in L-Chrom. Rather it encodes
a type of cognitive ability in a highly simplified manner. However, we think that
genetic redistribution is one of the consequences of masking and unmasking ef-
fects, but not a mechanism of it. Indeed, by modifying the model design, we
consider that we would be able to demonstrate a type of redistributional pro-
cess. Despite that, in this simulation we have intentionally ignored that aspect
since it would potentially blur the causal mechanism working between niche con-
structions and the masking effect. It remains, however, one of our next research
targets in this avenue.
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