information structure and learning: the artificiality of grammar

michael ramscar

thanks to
melody dye
dan yarlett
richard futrell
inbal arnon
dan jurafsky
ramscar lab

how language work?

Blahdy blahy blah blah blah...

how does this... end up here?
one approach…

a program

how are our thoughts encoded?

how do we learn the rules by which we turn out thoughts into a common code that allows them to be exchanged?

how do we get meaning out of the code?

is it learnable?

are symbolic or sub-symbolic models of this process more accurate?
form vs function?

How best to study the system

should we focus on the formal system, or the function of its components?

functions?

'We talk of process and states, and leave their nature undecided. Sometime perhaps we will know more about them - we think. But that is just what commits us to a particular way of looking at the matter.'

L. Wittgenstein, *Philosophical Investigations*
two metaphors?

Blahdy blahy blah blah blah...

how does this...

end up here?

Blahdy blahy blah blah blah...

Blahdy blahy blah...

Blahdy blahy blah...

relate to this
communication & learning
formally = prediction and discrimination

- a different program
 - speakers co-operate with listeners to help them discriminate the content of messages from possible alternatives
 - try to characterize what it is about learners and their interactions with the environment (including others) that enables them to predict and understand others

 learners

- what is learning?
 - formal learning theory treats learning as a process through which information about the cues that allow environmental regularities to be predicted is acquired

classical conditioning

- learning is driven by discrepancies between what is expected and what actually occurs.

- discrepancies in prediction cause:
 - value of predictive cues to be strengthened when outcomes are underpredicted,
 - weakened when overpredicted

how does it work?

the importance of being wrong
value of predictive cues is strengthened when outcomes are underpredicted

- most philosophers, linguists, psychologists etc., get this part:

 - A occurs after B, but was not fully anticipated:

 if wrong, increase the predictive value of B

value of predictive cues is weakened when outcomes are overpredicted

- most philosophers, linguists, psychologists etc., **don’t** get this:

 - if A does **not** occur after B, but was anticipated

 if wrong, reduce the predictive value of B

“being wrong”

in error driven learning, violation of expectation is a powerful source of negative evidence

animals learn this way

maybe people do as well?

your date doesn’t show up or a punch line

is human learning error-driven?

how to tell?

- cues allow predictions to be learned and made

- the amount of discriminative information that can be *positively* encoded in a set of S cues with V values is $(V^s)-1$

2 binary valued cues allow 3 positive outcomes to be discriminated between

<table>
<thead>
<tr>
<th>cues</th>
<th>alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>![image1]</td>
<td>1 or 2</td>
</tr>
</tbody>
</table>

amount of discrimination that can be *positively* encoded in a set of x cues is $(2^x)-1$
discrimination and coding

if one set of bits a is used to specify the what is or can be encoded in another set of bits b, a must have sufficient bits to encode b.

dsomething about the structure of information in our world

the world is complicated

speech sounds are less so

we can easily discriminate between the units that sound symbols are made up of, but not within them

words ("symbols") appear to comprise a vastly smaller set of bits than their possible meanings...

a window into the nature of symbolic learning?

if this analysis is correct, we can use our understanding of learning and information structure to analyze human learning...

...and make predictions

does the set size principle apply to symbolic coding and symbolic learning?

words and prediction

"wugs"

"nizes"

words and prediction
despite the misleading name, “associative models” work because they dissociate weak cues and not just because they associate cues with events

-- they are discrimination networks

• overprediction will cause “body” to lose value when in competition with “red” and “blue”
words and prediction

> hears “wug” then sees “wug”

prediction

words and prediction

> hears “niz” then sees “niz”

prediction

words and prediction

> hears “wug” then sees “wug”

prediction

no cue competition = no discrimination

- without cue competition, learning simply tracks co-occurrences between the cues and the labels

what is this?

75% “wugs”

25% “nizes”

co-occurrences can mislead...
exploring this idea

fribble categories

- dep
 - 75%
 - 25%

- wug
 - 75%
 - 25%

- tob
 - 75%
 - 25%

fribble categories

- dep
 - 75%
 - 25%

- wug
 - 75%
 - 25%

- tob
 - 75%
 - 25%

fribble categories

75% tobs

25% deps

fribble categories

75% tobs

25% deps

fribble categories

75% tobs

25% deps
in the models, different representations are learned depending on the structure of the environment

do people do this?

how well did the models discriminate the low frequency exemplars?

fribble categories

in the models, different representations are learned depending on the structure of the environment

do people do this?

training

test 1
test 2

what did people do?

tob

data

% Correct

Train LF Train FL N=32

control

chance

High Freq in Training (75%)
Low Freq in Training (25%)

data

% Correct

Train LF Train FL N=32

chance

Low Freq in Training (25%)

data

% Correct

Train LF Train FL N=32

chance

Low Freq in Training (25%)

discrimination

% Correct

Train LF Train FL N=32

chance

Low Freq in Training (25%)
what about “real” meaning, “in the wild?”

I carefully followed the mental development of my small children, and was astonished to learn that soon after they had reached the age where they knew the names of all ordinary things, they appeared to be entirely incapable of giving the right name to colors…

I remember quite clearly to have stated they were color-blind

Charles Darwin, 1877

the problem

• kids learn color words late in English
 – may struggle to learn even after 100s of training trials as late as 4
• “know” the words
 – red, yellow etc in vocabularies early
• “know” something about them
 – use them in correct part of speech
• “don’t know” the words
 – use of individual color words haphazard and interchangeable
• behavior same as blind children (GLEITMAN & LANDAU)…

the problem

• why are color words hard to learn?
 – color is everywhere
 – surely kids will get lots of training
• is ubiquity the problem?
 – color is everywhere
 – what kind of information is their in the environment?

color is ubiquitous

(i) time (ii)…

i hears “red”
so how might children learn color adjectives?

"look at the duck... it's yellow..."

how might color adjective learning work?

Learning driven by prediction
Find the set cues that predict yellow

Duck features
Yellow

how might color adjective learning work?

"look at the duck... it's red..."

Duck features
Yellow

Competition yields the particular cue (or set of cues) that reliably predict yellow

how might color adjective learning work?

"look at the yellow duck..."

Duck features
Yellow

a problem with english

Yellow is now predicting the features
size
an experiment

training
• test kids at 24 - 26 months (N=41)
 – little evidence of consistent color comprehension at this age
• 3 colors, red, blue & yellow
• test - train - test design
 – expect kids to know something: can we reinforce what they already know?

test
· “show me the red one”

test
· “show me the one that is blue”

train

• half of the children
“this is a blue ball”

“this ball is blue”

“show me the red one”

“show me the one that is blue”

results
what about other words?

• feature label ordering can offer interesting insights into how concrete nouns and adjectives are learned…

…but there is more to language than that

• can feature label ordering can help us understand how the more abstract parts of language are learned?

grammatical gender

• in English we uniformly (?) apply a single determiner to all nouns

 the chair, the dog

• in other languages, things are more complicated

 la chaise, le chien

grammatical gender

• system found in many languages

 – assigns all nouns (including inanimate ones) to noun classes, and marks neighboring words for agreement

 • in Hebrew, for example, verbs and adjectives are marked for gender.

 • in Spanish and French, articles have to agree in gender with the nouns they precede.

 • knowing a noun’s gender in gender-marking languages is essential to correct sentence construction
learning grammatical gender

• native speakers
 – rapid mastery by children
 – children and adults can use gender information to guide lexical access

• adult L2 learners
 – persistent difficulty even after extensive exposure
 – do not use gender information to guide lexical access

why?

• L2 learners have learned to segment a first language…
 … unlike children

• maybe children start off from larger units

• how might this affect the learning grammatical gender?

blocking

1a. AB → X
1b. A → X
1c. B → ?

why might this harm L2 learners?

1. child

- / mano /

2. adult L2 learner

- / mano /
 - / la mano /
teaching grammatical gender in an artificial language

- two conditions:
 - sequence-first condition: whole sequences first and then noun labels
 - label-first condition: noun labels first and then whole sequences
- identical frequency-of-exposure

training

- participants saw a picture and heard speech
 - Each noun label 5 times
 - Each determiner-noun sequence 5 times

noun label only

Hear: “slindot”

Hear: “viltord”

full sequence

Hear: “Os ferpel een bol slindot”

Hear: “Os ferpel een oos viltord”
information structure for
noun only

information structure for
sequence

Os ferpel een

Os ferpel een

viltord

bol
14 noun labels for familiar concrete objects, two determiners (bol, sem) one carrier phrase

model training

only difference: order of exposure

- sequence-first condition
 1. block of whole sentences
 2. block of noun labels

- label-first condition
 1. block of noun labels
 2. block of whole sentences
modeling result

human training

only difference: order of exposure
• sequence-first condition
 1. block of whole sentences
 2. block of noun labels

• label-first condition
 1. block of noun labels
 2. block of whole sentences

testing

• forced-choice: see a picture, hear two
descriptions and choose the correct one
 – determiner trials: incorrect sentence had right
 label but wrong determiner
 – noun trials: incorrect sentence had right
 determiner but wrong label

• production: see a picture, produce a full
 sentence

determiner forced-choice results

noun forced-choice results

• participants better in
 the sequence-first
 condition!
wait?

• gendered determiners help?
• but…
 – isn't gender just silly, pointless stuff?

“In German… every noun has a gender, and there is no sense or system in the distribution; so the gender of each must be learned separately and by heart. There is no other way. To do this one has to have a memory like a memorandum-book. In German, a young lady has no sex, while a turnip has. Think what overwrought reverence that shows for the turnip, and what callous disrespect for the girl…:

Gretchen: Wilhelm, where is the turnip?
Wilhelm: She has gone to the kitchen.
Gretchen: Where is the accomplished and beautiful English maiden?
Wilhelm: It has gone to the opera.”

Mark Twain, (1880) "The Awful German Language"

“The presence of such systems [German gender] in a human cognitive system constitutes by itself excellent testimony to the occasional nonsensibleness of the species. Not only was this system devised by humans, but generation after generation of children peaceably relearns it.”

Michael Maratsos (1979)

German gender & entropy reduction

(1) Yesterday I visited the Doctor

nouns are the most frequent POS

how to find out?

• examined the NEGRA II corpus of German newspapers (Skut et al. 1997)
• for each case, every noun immediately preceded by a definite article was extracted and counted.
• the entropy of all the nouns in each case was calculated separately, and then the conditional entropy given each type of article was calculated
How might it work?

- compare the information requirements for helping someone predict that Beethoven and not Mozart will be the topic of a sentence
- versus helping someone predict Villa-Lobos rather than Schoenberg (20th century composers) will be the topic of a sentence.
 - if the topic of discussion is either Beethoven or Mozart, frequency and saliency alone will tend to render Villa-Lobos and Schoenberg largely irrelevant.
 - if Villa-Lobos or Schoenberg were to be the topic of a sentence, a cue corresponding to 20th century classical music would be incredibly informative.

And?

- among noun pairs, overall gender sameness was predicted by two factors:
 1) semantic similarity (the more tightly semantically coupled, the more likely the pair was to share a gender), and
 2) the frequency of the words in the pairing (the lower their frequency, the more likely the pair was to share a gender).
- while there was no main effect of co-occurrence, co-occurrence did enter into a significant interaction with frequency.

In other words...

- for high frequency words, likelihood of co-occurrence tended to predict gender difference
- for low frequency words, semantic similarity tended to predict same gender

So how does it work?

- examined the 512 nouns that occur in the 100 conversations of the spoken callhome corpus.
 - a logistic regression model predicted gender sameness for pairs of nouns based on the frequency, mutual information (a measure of how often the two nouns co-occurred with one another, controlling for frequency), and semantic similarity of each pair.
what if we had no gender?

- German gender classes serve to make nouns more predictable in context
- what does this mean for English, a Germanic language that has largely shed noun class?

a comparison

- compared the average entropy of nouns in the negra corpus studied so far to those in the New York Times gigaword corpus of English.
- entropy of English nouns after definite articles is 10.17 bits
- entropy of German nouns after gendered definite articles was 10.55 bits.
 - entropy of German nouns rises to 11.71 bits when calculated with gender information removed.

Which means?

- nouns after definite articles are more diverse in German than English
 - compared type/token ratio of lemmas in the samples
 - average frequency of the German lemmas in Negra is 2.12,
 - average frequency of a similar noun lemma in the English sample is 4.93

Which means?

- German is a more informative language than English

Which means?

- German is a more informative language than English
 - or
- English makes use of another device to make nouns more predictable

adjectives

- examined the determiner-adjective-noun sequences in the negra and the nyt corpuses.
 - average frequency of a German adjective in this context was 6.66,
 - average frequency of an English adjective here was 4.08
 - average frequency of a German noun in this context is 2.26,
 - average frequency of an English noun is 3.36
hmmm

- high-frequency nouns are, by definition, less informative than low-frequency nouns (for instance
 - “doberman” is more informative than “puppy,” which is more informative than “dog,” see e.g., Fosch, 1978).
 - one might reasonably expect adjectives to be applied more to high-frequency nouns, which are less informative and are therefore more in need of semantic augmentation than low-frequency nouns, which tend to be more specific.

but

- if English entropy reduction is provided by adjectives, we would expect that pre-nominal adjectives would be applied more to low-frequency nouns than high-frequency nouns
 - low-frequency nouns convey more information (and therefore benefit more from entropy reduction) than high-frequency nouns.
<table>
<thead>
<tr>
<th>SO</th>
</tr>
</thead>
</table>
| • *gender markers harder for adults to learn…*
| • *English genders lost during *Norse* colonization*
| • *German noun class function has shifted to adjectives in *English*?*